Hyperelastic, Robust, Fire‐Safe Multifunctional MXene Aerogels with Unprecedented Electromagnetic Interference Shielding Efficiency

نویسندگان

چکیده

Abstract MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air‐stable, and durable enabling effective EMI protection at low concentrations due the difficulties achieving tailorable porous structures, excellent mechanical elasticity, desired antioxidation capabilities of air. Here, facile strategy fabricating composite by co‐assembling cellulose nanofibers during freeze‐drying followed surface encapsulation with fire‐retardant thermoplastic polyurethane (TPU) is reported. Because maximum utilization pore structures MXene, conductive loss enhanced multiple internal reflections, as‐prepared aerogel 3.14 wt% exhibits an exceptionally high shielding effectiveness 93.5 dB, ultra‐high efficiency 2977.71 dB g −1 , tripling values previous works. Owing presence hydrogen bonding TPU elastomer, hyperelastic feature additional strength, stability, superior durability, fire safety. This study provides creating multifunctional applications protection, wearable devices, thermal management, pressure sensing, intelligent monitoring.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Materials for Electromagnetic Interference Shielding

This paper demonstrates that the addition of chemical agents and carbon fibers to cement can greatly enhance the shielding effectiveness of the concrete. In addition to improving the shielding effectiveness, carbon fibers and chemical agents enhance the tensile and flexural strengths significant ly. As both carbon fibers and steel fibers are electrically conductive, both can be added to cement ...

متن کامل

Recent Progress in Multifunctional Graphene Aerogels

Two dimensional (2D) graphene has become one of the most intensively explored carbon allotropes in materials science owing to attractive features like its outstanding physicochemical properties. In order to further practical applications, the fabrication of self-assembled 2D individual graphene sheets into 3D graphene aerogels (GAs) with special structures and novel functions is now becoming es...

متن کامل

The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites

Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01–15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2–12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate...

متن کامل

New promising hybrid materials for electromagnetic interference shielding with improved stability and mechanical properties.

A novel transparent Co0.2Fe2.8O4@SiO2-polyetheretherketone hybrid material is prepared for electromagnetic interference shielding via in situ sol-gel process. 20% amino-functionalized polyetheretherketone (AFPEEK), containing trifluoromethyl units with excellent solubility is designed and synthesized to improve the stability and mechanical properties of Co0.2Fe2.8O4@SiO2 nanoparticles. The hydr...

متن کامل

PolyCond: electromagnetic shielding with conducting polymers

Picture this: your mobile phone is lying on your desk, close to the speaker of your computer system. A few seconds before you receive a call or SMS message on your mobile phone, the speaker makes a buzzing noise. Is this clairvoyance of the speaker? No way. Here, the wire to the speaker acts like an antenna that picks up and amplifies the signal it receives from the mobile phone network. This i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2023

ISSN: ['1616-301X', '1616-3028']

DOI: https://doi.org/10.1002/adfm.202306884